5193 measured reflections

 $R_{\rm int} = 0.025$

2729 independent reflections

2549 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Methyl-3-phenylsulfonyl-2-piperidone

Julio Zukerman-Schpector,^a* Paulo R. Olivato,^b Carlos R. Cerqueira Jr,^b Elisângela Vinhato^b and Edward R. T. Tiekink^c

^aDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, ^bChemistry Institute, University of São Paulo, 05508-000 São Paulo, SP, Brazil, and ^cDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA Correspondence e-mail: julio@power.ufscar.br

Received 4 April 2008; accepted 5 April 2008

Key indicators: single-crystal X-ray study; T = 98 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.119; data-to-parameter ratio = 17.7.

The piperidone ring in the title compound, $C_{12}H_{15}NO_3S$, has a slightly distorted half-chair conformation with the methyl, carbonyl and phenylsulfonyl ring substituents occupying equatorial, equatorial and axial positions, respectively. Molecules are connected into centrosymmetric dimers *via* C– $H \cdots O$ interactions and these associate into layers *via* C– $H \cdots O-S$ contacts. Further C– $H \cdots O$ interactions involving both the carbonyl and sulfonyl O atoms consolidate the crystal packing by providing connections between the layers.

Related literature

For related structures, see: Zukerman-Schpector *et al.* (1999, 2006). For related literature, see: Distefano *et al.* (1991); Olivato *et al.* (1992, 1997, 2003, 2004); Dal Colle *et al.* (1995). For ring conformational analysis, see: Cremer & Pople (1975). For the synthesis, see: Drabowicz *et al.* (1983); Zoretic & Soja (1976).

Experimental

Crystal data

 $\begin{array}{l} C_{12}H_{15}NO_{3}S\\ M_{r}=253.32\\ Monoclinic, P2_{1}/n\\ a=9.0191\ (16)\ \text{\AA}\\ b=10.4920\ (18)\ \text{\AA}\\ c=13.446\ (3)\ \text{\AA}\\ \beta=107.861\ (3)^{\circ} \end{array}$

 $V = 1211.1 (4) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.26 \text{ mm}^{-1}$ T = 98 (2) K $0.25 \times 0.18 \times 0.10 \text{ mm}$ Data collection

```
Rigaku AFC12\kappa/SATURN724
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
T_{min} = 0.945, T_{max} = 0.974
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	154 parameters
$wR(F^2) = 0.118$	H-atom parameters constrained
S = 1.12	$\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$
2729 reflections	$\Delta \rho_{\rm min} = -0.45 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D = H \cdots A$ $D = H$ $H \cdots A$ $D \cdots A$ $D = H$	$[\cdots A]$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) -x + 2, -y + 1, -z + 1; (iii) -x + 1, -y, -z + 1; (iv) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXL97*.

We thank FAPESP and CNPq for financial support. CRC and EV thank CNPq for doctoral fellowships; PRO and JZ-S thank CNPq for fellowships (Brazil). Support from UTSA, CNPq and FAPESP to allow JZ-S to spend a sabbatical at UTSA is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2443).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Dal Colle, M., Bertolasi, V., De Palo, M., Distefano, G., Jones, D., Modelli, A. & Olivato, P. R. (1995). J. Chem. Phys. 99, 15011–15017.
- Distefano, G., Dal Colle, M., Bertolasi, V., Olivato, P. R., Bonfada, E. & Mondino, M. G. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 1195–1199.
- Drabowicz, J., Lyzwa, P. & Mikolajczyk, M. (1983). *Phosphorus Sulfur Silicon*, **17**, 169–172.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPH. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Olivato, P. R., Bonfada, E. & Rittner, R. (1992). Magn. Reson. Chem. 30, 81-84.
- Olivato, P. R., Guerrero, S. A. & Rittner, R. (1997). *Phosphorus Sulfur Silicon*, **130**, 155–174.
- Olivato, P. R., Hui, M. L. T., Rodrigues, A., Ruiz Filho, R., Rittner, R., Zukerman-Schpector, J., Distefano, G. & Dal Colle, M. (2003). J. Mol. Struct. 645, 259–271.
- Olivato, P. R., Reis, A. K. C. A., Ruiz Filho, R., Zukerman-Schpector, J. & Rittner, R. (2004). J. Mol. Struct. THEOCHEM, 677, 199–210.

Rigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587-3589.

Kristallogr. New Cryst. Struct. 214, 563–564.

^{Zukerman-Schpector, J., Maganhi, S., Olivato, P. R., Vinhato, E. & Cerqueira,} C. R. (2006). Z. Kristallogr. New Cryst. Struct. 221, 165–166.
Zukerman-Schpector, J., Olivato, P. R., Bueno, E. & Guerrero, S. A. (1999). Z.

supplementary materials

Acta Cryst. (2008). E64, o835-o836 [doi:10.1107/S1600536808009288]

1-Methyl-3-phenylsulfonyl-2-piperidone

J. Zukerman-Schpector, P. R. Olivato, C. R. Cerqueira Jr, E. Vinhato and E. R. T. Tiekink

Comment

The title compound (I), Fig. 1, was studied as a part of an on-going investigation of conformational and electronic aspects of different classes of β -keto-sulfones, *i.e.* α -phenylsulfonyl -acetones, -acetophenones and -cyclohexanones, utilizing spectroscopic, theoretical and X-ray diffraction methods (Dal Colle *et al.*, 1995; Zukerman-Schpector *et al.*, 1999; 2006).

The piperidone ring has a slightly distorted half-chair conformation with a tendency towards a half-boat conformation: the ring-puckering parameters are $q_2 = 0.340$ (2) Å, $q_3 = 0.332$ (2) Å, QT = 0.476 (2) °, $\varphi_2 = -145.0$ (3)° (Cremer & Pople, 1975). The ring substituents, *i.e. N*-methyl, *C*-carbonyl and *C*-phenylsulfonyl, occupy equatorial, equatorial and axial positions, respectively.

The crystal packing is dominated by C—H···O interactions, Table 1. Centrosymmetrically related molecules of (I) are connected into dimeric aggregates *via* C2—H···O1 contacts and these are linked into layers stacked along (1 0 1) *via* C6—H···O2 contacts. Connections betweem layers are also of the type C—H···O and serve to consolidate the crystal packing.

Experimental

Initially, the 3-phenylsulfanyl-1-methyl-2-piperidone was obtained from the reaction of 1-methyl-2-piperidinone and diphenyl disulfide with LDA in THF as described in the literature (Zoretic and Soja, 1976). The product was oxidized with H₂O₂ and SeO₂ (as catalyst) in methanol (Drabowicz *et al.* 1983) to give compound (I). After extraction with chloroform and subsequent evaporation, a crude solid was obtained. This product was subjected to flash chromatography with a solution of ethyl acetate and acetone in a 7:3 ratio. Suitable crystals were obtained by vapor diffusion from chloroform/n-hexane at 283 K.; m.p. 414–415 K. IR (cm⁻¹): v(C=O) 1652, v(SO₂)(as) 1307, v(SO₂)(*s*) 1148. NMR (CDCl₃, p.p.m.): δ 1.79–2.74 (4*H*, m), 2.95 (3*H*, s), 3.30–3.48 (2*H*, m), 3.97 (1*H*, triplet, J = 6.1 Hz), 7.53–7.57 (2*H*, m, aryl-H), 7.62–7.67 (1*H*, m, aryl-H), 7.92–7.94 (2*H*, m, aryl-H). Analysis found: C 56.86, H 6.04, N 5.58; C₁₂H₁₅O₃NS requires: C 56.89, H 5.97, N 5.53%.

Refinement

All H atoms were included in the riding-model approximation with C—H = 0.95 - 1.00 Å, and with $U_{iso}(H) = 1.5U_{eq}(methyl-C)$ or $1.2U_{eq}(remaining-C)$.

Figures

Fig. 1. Molecular structure of (I) showing atom labelling and displacement ellipsoids at the 50% probability level.

Fig. 2. Crystal packing in (I) highlighting the C—H…O hydrogen bonding contacts (orange dashed lines) leading to the formation of dimeric aggregates and the overall layer arrangement.

1-Methyl-3-phenylsulfonyl-2-piperidone

Crystal data	
C ₁₂ H ₁₅ NO ₃ S	$F_{000} = 536$
$M_r = 253.32$	$D_{\rm x} = 1.389 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71070$ Å
Hall symbol: -P 2yn	Cell parameters from 4417 reflections
<i>a</i> = 9.0191 (16) Å	$\theta = 2.4 - 40.6^{\circ}$
b = 10.4920 (18) Å	$\mu = 0.26 \text{ mm}^{-1}$
c = 13.446 (3) Å	T = 98 (2) K
$\beta = 107.861 \ (3)^{\circ}$	Block, colourless
V = 1211.1 (4) Å ³	$0.25\times0.18\times0.10~mm$
Z = 4	

Data collection

Rigaku AFC12ĸ/SATURN724 diffractometer	2729 independent reflections
Radiation source: fine-focus sealed tube	2549 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.025$
T = 98(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -10 \rightarrow 11$
$T_{\min} = 0.945, T_{\max} = 0.974$	$k = -13 \rightarrow 11$
5193 measured reflections	$l = -17 \rightarrow 7$

Refinement

Refinement on F^2	Secondary atom s
Least-squares matrix: full	Hydrogen site loc sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameter
$wR(F^2) = 0.118$	$w = 1/[\sigma^2(F_o^2) + where P = (F_o^2 + F_o^2)$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0539P)^2 + 0.7818P]$ where $P = (F_o^2 + 2F_c^2)/3$

<i>S</i> = 1.12	$(\Delta/\sigma)_{max} < 0.001$
2729 reflections	$\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$
154 parameters	$\Delta \rho_{min} = -0.45 \text{ e } \text{\AA}^{-3}$
we have a second s	

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
S1	0.76305 (5)	0.20597 (4)	0.49677 (3)	0.01768 (15)
01	1.13033 (15)	0.14856 (13)	0.56636 (9)	0.0186 (3)
O2	0.79732 (18)	0.33520 (13)	0.53443 (11)	0.0265 (3)
O3	0.60745 (15)	0.17739 (15)	0.43018 (11)	0.0275 (3)
N1	1.11807 (17)	0.30781 (15)	0.45077 (11)	0.0170 (3)
C1	1.0585 (2)	0.20646 (17)	0.48622 (13)	0.0147 (3)
C2	0.8952 (2)	0.16205 (17)	0.42479 (13)	0.0153 (3)
H2	0.8969	0.0669	0.4210	0.018*
C3	0.8348 (2)	0.21313 (18)	0.31267 (14)	0.0196 (4)
H3A	0.8843	0.1657	0.2676	0.024*
H3B	0.7208	0.1998	0.2850	0.024*
C4	0.8711 (2)	0.35463 (19)	0.30992 (14)	0.0214 (4)
H4A	0.8313	0.3865	0.2372	0.026*
H4B	0.8188	0.4027	0.3530	0.026*
C5	1.0457 (2)	0.37553 (19)	0.35160 (14)	0.0208 (4)
H5A	1.0942	0.3460	0.2989	0.025*
H5B	1.0668	0.4679	0.3625	0.025*
C6	1.2777 (2)	0.3460 (2)	0.50751 (14)	0.0213 (4)
H6A	1.3156	0.2956	0.5717	0.032*
H6B	1.2794	0.4367	0.5254	0.032*
H6C	1.3448	0.3314	0.4635	0.032*
C7	0.8027 (2)	0.10460 (17)	0.60682 (13)	0.0166 (3)
C8	0.9117 (2)	0.14160 (19)	0.70016 (14)	0.0199 (4)
H8	0.9681	0.2189	0.7041	0.024*
C9	0.9368 (2)	0.0641 (2)	0.78751 (14)	0.0211 (4)
H9	1.0114	0.0879	0.8516	0.025*
C10	0.8528 (2)	-0.04843 (19)	0.78116 (14)	0.0215 (4)

supplementary materials

H10	0.8704	-0.1013	0.8	411	0.026*	
C11	0.7431 (2)	-0.08410	0 (19) 0.6	8753 (15)	0.0209 (4)	
H11	0.6856	-0.1607	0.6	839	0.025*	
C12	0.7177 (2)	-0.00801	1 (18) 0.5	9943 (14)	0.0185 (4)	
H12	0.6437	-0.0322	0.5	352	0.022*	
Atomic dis	placement parameter:	$s(A^2)$				
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
S1	0.0168 (2)	0.0151 (3)	0.0225 (2)	0.00200 (10	6) 0.00796 (18)	0.00263 (16)
01	0.0179 (6)	0.0205 (7)	0.0155 (6)	0.0007 (5)	0.0026 (5)	0.0026 (5)
O2	0.0382 (8)	0.0134 (7)	0.0353 (8)	0.0021 (6)	0.0223 (7)	0.0004 (6)
O3	0.0144 (6)	0.0339 (8)	0.0324 (7)	0.0022 (6)	0.0044 (6)	0.0120 (6)
N1	0.0153 (7)	0.0180 (8)	0.0159 (7)	-0.0018 (6)) 0.0023 (6)	0.0013 (6)
C1	0.0153 (8)	0.0149 (9)	0.0147 (7)	-0.0002 (6)) 0.0056 (6)	-0.0023 (6)
C2	0.0153 (8)	0.0141 (8)	0.0163 (8)	0.0000 (6)	0.0046 (6)	-0.0010 (6)
C3	0.0181 (9)	0.0224 (10)	0.0154 (8)	0.0001 (7)	0.0008 (7)	-0.0005 (7)
C4	0.0218 (9)	0.0215 (9)	0.0178 (8)	0.0016 (7)	0.0015 (7)	0.0027 (7)
C5	0.0242 (9)	0.0193 (9)	0.0174 (8)	-0.0015 (7)) 0.0043 (7)	0.0044 (7)
C6	0.0187 (9)	0.0233 (10)	0.0205 (8)	-0.0054 (7)) 0.0039 (7)	0.0003 (7)
C7	0.0180 (8)	0.0145 (8)	0.0194 (8)	0.0015 (7)	0.0090 (7)	0.0004 (7)
C8	0.0192 (9)	0.0192 (9)	0.0232 (9)	-0.0026 (7)) 0.0096 (7)	-0.0035 (7)
C9	0.0197 (9)	0.0254 (10)	0.0191 (8)	-0.0010 (7)) 0.0072 (7)	-0.0037 (7)
C10	0.0230 (9)	0.0243 (10)	0.0205 (8)	0.0027 (8)	0.0113 (7)	0.0037 (7)
C11	0.0204 (9)	0.0180 (9)	0.0274 (9)	-0.0019 (7)) 0.0120 (7)	0.0002 (7)

0.0214 (8)

0.0061 (7)

-0.0014 (7)

-0.0018 (7)

Geometric parameters (Å, °)

0.0173 (8)

0.0170 (9)

C12

S1—O3	1.4457 (15)	C5—H5A	0.9900
S1—O2	1.4472 (15)	С5—Н5В	0.9900
S1—C7	1.7674 (18)	С6—Н6А	0.9800
S1—C2	1.8101 (18)	С6—Н6В	0.9800
O1—C1	1.233 (2)	С6—Н6С	0.9800
N1—C1	1.343 (2)	С7—С8	1.391 (3)
N1—C6	1.463 (2)	C7—C12	1.395 (3)
N1—C5	1.475 (2)	C8—C9	1.389 (3)
C1—C2	1.524 (2)	С8—Н8	0.9500
C2—C3	1.534 (2)	C9—C10	1.391 (3)
С2—Н2	1.0000	С9—Н9	0.9500
C3—C4	1.523 (3)	C10-C11	1.393 (3)
С3—НЗА	0.9900	С10—Н10	0.9500
С3—Н3В	0.9900	C11—C12	1.388 (3)
C4—C5	1.517 (3)	C11—H11	0.9500
C4—H4A	0.9900	С12—Н12	0.9500
C4—H4B	0.9900		
O3—S1—O2	118.26 (9)	N1—C5—C4	112.68 (15)
O3—S1—C7	107.61 (9)	N1—C5—H5A	109.1

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—S1—C7	107.71 (9)	C4—C5—H5A	109.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—S1—C2	106.81 (9)	N1—C5—H5B	109.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—S1—C2	108.70 (8)	C4—C5—H5B	109.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—S1—C2	107.28 (8)	H5A—C5—H5B	107.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N1—C6	117.93 (15)	N1—C6—H6A	109.5
C6-NI-C5 $I15.53$ ($I5$) $H6A-C6-H6B$ 109.5 $OI-C1-NI$ $I22.70$ ($I6$) $NI-C6-H6C$ 109.5 $NI-CI-C2$ $I18.35$ ($I5$) $H6B-C6-H6C$ 109.5 $NI-CI-C2$ $I18.35$ ($I5$) $H6B-C6-H6C$ 109.5 $CI-C2-C3$ $I14.75$ ($I5$) $C8-C7-C12$ $I12.42$ ($I7$) $CI-C2-C3$ $I14.75$ ($I5$) $C8-C7-S1$ $I19.54$ ($I4$) $CI-C2-H2$ $I07.8$ $C9-C8-C7$ $I19.10$ ($I8$) $C3-C2-H2$ $I07.8$ $C9-C8-H8$ 120.4 $CI-C3-G2$ $I10.50$ ($I5$) $C8-C9-H9$ 120.0 $C2-C3-H3A$ 109.6 $C9-C10-C11$ 120.40 ($I7$) $C2-C3-H3B$ 109.7 $C1-C1-C10$ $120.71(I8)$ $C3-C4-H4A$ 109.7 $C1-C1-C10$ $120.17(I8)$	C1—N1—C5	126.04 (15)	N1—C6—H6B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—N1—C5	115.53 (15)	H6A—C6—H6B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1-C1-N1	122.70 (16)	N1—C6—H6C	109.5
N1-C1-C2 118.35 (15) H6B-C6-H6C 109.5 C1-C2-C3 114.75 (15) C8-C7-C12 121.42 (17) C3-C2-S1 100.53 (11) C8-C7-S1 119.54 (14) C3-C2-S1 110.06 (12) C12-C7-S1 119.10 (18) C3-C2-H2 107.8 C9-C8-C7 119.10 (18) C3-C2-H2 107.8 C7-C8-H8 120.4 C4-C3-C2 110.50 (15) C8-C9-C10 120.03 (17) C4-C3-H3A 109.6 C10-C9-H9 120.0 C4-C3-H3A 109.6 C9-C10-C11 120.40 (17) C2-C3-H3A 109.6 C9-C10-C11 120.40 (17) C3-C4-H3B 109.6 C9-C10-C11 120.40 (17) C3-C4-H3B 109.6 C9-C10-H10 119.8 C5-C4-C3 109.79 (16) C12-C11-C10 120.17 (18) C5-C4-H4A 109.7 C11-C12-C7 118.87 (17) C3-C4-H4B 109.7 C11-C12-H12 120.6 C4-N1-C1-O1 17.46 (17) C6-N1-C5-C4 21.7 (3) C5-C4-H4B 109.7 C11-C12-H12 120.6 C4-N1-C1-C2	O1—C1—C2	118.95 (16)	H6A—C6—H6C	109.5
C1-C2-C3 114.75 (15) C8-C7-C12 121.42 (17) C1-C2-S1 108.53 (11) C8-C7-S1 119.54 (14) C3-C2-S1 100.66 (12) C12-C7-S1 118.96 (14) C1-C2-H2 107.8 C9-C8-C7 119.10 (18) C3-C2-H2 107.8 C9-C8-H8 120.4 C4-C3-C2 110.50 (15) C8-C9-C10 120.03 (17) C4-C3-H3A 109.6 C10-C1-H1 120.0 C2-C3-H3B 109.6 C9-C10-C11 120.0 C2-C3-H3B 109.6 C9-C10-H10 19.8 H3A-C3-H3B 109.6 C9-C10-H10 19.8 C5-C4-H4A 109.7 C12-C11-H11 119.9 C3-C4-H4A 109.7 C12-C11-H11 119.9 C3-C4-H4A 109.7 C12-C11-H11 119.9 C3-C4-H4B 109.7 C11-C12-H12 120.6 C6-N1-C1-O1 3.1 (3) C1-N1-C5-C4 21.7 (3) C3-C4-H4B 108.2 C7-C12-H12 120.6 C6-N1-C1-O1 3.1 (3) C1-N1-C5-C4 21.7 (3) C5-C4-H4B 109.7 (16) C3	N1—C1—C2	118.35 (15)	H6B—C6—H6C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—C3	114.75 (15)	C8—C7—C12	121.42 (17)
C3-C2-S1 110.06 (12) $C12-C7-S1$ 118.96 (14) $C1-C2-H2$ 107.8 $C9-C8-C7$ 119.10 (18) $C3-C2-H2$ 107.8 $C7-C8-H8$ 120.4 $C4-C3-C2$ 110.50 (15) $C8-C9-C10$ 120.03 (17) $C4-C3-H2$ 107.8 $C7-C8-H8$ 120.0 $C2-C3-H3A$ 109.6 $C8-C9-H9$ 120.0 $C4-C3-H3B$ 109.6 $C9-C10-C11$ 120.40 (17) $C2-C3-H3B$ 109.6 $C9-C10-C11$ 120.40 (17) $C2-C3-H3B$ 109.6 $C9-C10-H10$ 19.8 $C5-C4-C4$ 109.70 $C12-C11-C10$ 120.17 (18) $C5-C4-C4$ 109.7 $C12-C11-H11$ 119.9 $C3-C4-H4A$ 109.7 $C11-C12-C1$ 118.87 (17) $C3-C4-H4B$ 109.7 $C11-C12-C1$ 120.6 H4A-C4-H4B 109.7 $C11-C12-C1$ 120.6 H4A-C4-H4B 109.7 $C11-C12-C1$ 120.6 H4A-C4-H4B 109.7 $C11-C12-C1$ 120.6 C6-N1-C1-C1 3.1 (3) $C1-N1-C5-C44$ 2.7 (3)	C1C2S1	108.53 (11)	C8—C7—S1	119.54 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—S1	110.06 (12)	C12—C7—S1	118.96 (14)
C3-C2-H2 107.8 C9-C8-H8 120.4 S1-C2-H2 107.8 C7-C8-H8 120.4 C4-C3-C2 110.50 (15) C8-C9-C10 120.03 (17) C4-C3-C2 110.50 (15) C8-C9-H9 120.0 C2-C3-H3A 109.6 C9-C10-C11 120.40 (17) C2-C3-H3B 109.6 C9-C10-H10 119.8 M3A-C3-H3B 109.6 C9-C10-H10 119.8 S5-C4-C3 109.79 (16) C12-C11-C10 120.17 (18) C5-C4-H4A 109.7 C11-C12-H11 119.9 C3-C4-H4B 109.7 C11-C12-H12 120.6 C5-C4-H4B 109.7 C11-C12-H12 120.6 C5-C4-H4B 109.7 C11-C12-H12 120.6 C6-N1-C1-D1 31.(3) C1-N1-C5-C4 165.88 (16) C5-N1-C1-D1 174.61 (17) C6-N1-C5-C4 165.88 (16) C5-N1-C1-C2 -177.19 (15) C3-C4-C5-N1 -47.8 (2) C5-N1-C1-C2 -57.(3) 03-S1-C7-C8 22.67 (17) N1-C1-C2-C3 17.0 (2) C2-S1-C7-C8 90.58 (15) O1-C1-C2-C3	C1—C2—H2	107.8	C9—C8—C7	119.10 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—С2—Н2	107.8	С9—С8—Н8	120.4
C4-C3-C2 110.50 (15) $C8-C9-C10$ 120.03 (17) $C4-C3-H3A$ 109.6 $C8-C9-H9$ 120.0 $C2-C3-H3A$ 109.6 $C9-C10-C11$ 120.40 (17) $C4-C3-H3B$ 109.6 $C9-C10-H10$ 119.8 $H3A-C3-H3B$ 109.6 $C9-C10-H10$ 119.8 $C5-C4-C3$ 109.79 (16) $C12-C11-C10$ 120.17 (18) $C5-C4-H4A$ 109.7 $C12-C11-H11$ 119.9 $C3-C4-H4A$ 109.7 $C11-C12-C7$ 118.87 (17) $C3-C4-H4B$ 109.7 $C11-C12-H12$ 120.6 $C4-H4B$ 109.7 $C11-C12-H12$ 120.6 $C4-H4B$ 109.7 $C11-C12-H12$ 120.6 $C5-NI-C1-O1$ 3.1 (3) $C1-NI-C5-C4$ -166.58 (16) $C5-NI-C1-O1$ 17.4 61 (17) $C6-NI-C5-C4$ -166.58 (16) $C6-NI-C1-C2$ -177.19 (15) $C3-C4-C5-N1$ -47.8 (2) $C5-NI-C1-C2$ -57.30 $O3-SI-C7-C8$ -26.27 (17) $NI-C1-C2-C3$ -163.27 (15) $O2-SI-C7-C8$ -26.27 (17) $NI-C1-C2-C3$ -165.5 (15) O	S1—C2—H2	107.8	С7—С8—Н8	120.4
C4-C3-H3A 109.6 $C8-C9-H9$ 120.0 $C2-C3-H3A$ 109.6 $C10-C9-H9$ 120.0 $C4-C3-H3B$ 109.6 $C9-C10-C11$ 120.40 (17) $C2-C3-H3B$ 109.6 $C9-C10-H10$ 119.8 $H3A-C3-H3B$ 109.6 $C9-C10-H10$ 119.8 $H3A-C3-H3B$ 109.7 $C12-C11-C10$ 120.17 (18) $C5-C4-C3$ 109.79 (16) $C12-C11-H11$ 119.9 $C5-C4-H4A$ 109.7 $C10-C11-H11$ 119.9 $C5-C4-H4B$ 109.7 $C11-C12-C7$ 118.87 (17) $C3-C4-H4B$ 109.7 $C11-C12-H12$ 120.6 $C4-H4B$ 109.7 $C11-C12-H12$ 120.6 $C4-H4B$ 108.2 $C7-C2-H12$ 120.6 $C4-H4B$ 108.2 $C7-C12-H12$ 120.6 $C5-N1-C1-O1$ 3.1 (3) $C1-N1-C5-C4$ 2.1.7 (3) $C5-N1-C1-C2$ -177.19 (15) $C3-C4-C5-N1$ -47.8 (2) $C5-N1-C1-C2$ $-57.7 (3)$ $O3-S1-C7-C8$ -96.27 (17) $N1-C1-C2-C3$ $1-63.27$ (15) $O2-S1-C7-C8$ 90.58 (C4—C3—C2	110.50 (15)	C8—C9—C10	120.03 (17)
C2-C3-H3A 109.6 C10-C9-H9 120.0 C4-C3-H3B 109.6 C9-C10-C11 120.40 (17) C2-C3-H3B 109.6 C9-C10-H10 119.8 H3A-C3-H3B 108.1 C11-C10-H10 119.8 C5-C4-C3 109.79 (16) C12-C11-H11 119.9 C3-C4-H4A 109.7 C12-C11-H11 119.9 C3-C4-H4B 109.7 C11-C12-C7 118.87 (17) C3-C4-H4B 109.7 C11-C12-H12 120.6 H4A-C4-H4B 108.2 C7-C12-H12 120.6 C6-N1-C1-O1 3.1 (3) C1-N1-C5-C4 21.7 (3) C5-N1-C1-O1 174.61 (17) C6-N1-C5-C4 -166.58 (16) C6-N1-C1-C2 -177.19 (15) C3-C4-C5-N1 -47.8 (2) C5-N1-C1-C2 -57 (3) O3-S1-C7-C8 -26.27 (17) N1-C1-C2-C3 170.(2) C2-S1-C7-C8 90.58 (15) O1-C1-C2-C3 173.16 (18) O3-S1-C7-C12 21.86 (17) N1-C1-C2-C3 173.16 (18) O3-S1-C7-C12 90.5 (3) O1-C1-C2-S1 -106.55 (15) O2-S1-C7-C12 90.5 (3) <t< td=""><td>С4—С3—НЗА</td><td>109.6</td><td>С8—С9—Н9</td><td>120.0</td></t<>	С4—С3—НЗА	109.6	С8—С9—Н9	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—С3—НЗА	109.6	С10—С9—Н9	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С4—С3—Н3В	109.6	C9—C10—C11	120.40 (17)
H3A-C3-H3B 108.1 C11-C10-H10 119.8 C5-C4-C3 109.79 (16) C12-C11-C10 120.17 (18) C5-C4-H4A 109.7 C12-C11-H11 119.9 C3-C4-H4A 109.7 C10-C11-H11 119.9 C5-C4-H4B 109.7 C11-C12-C7 118.87 (17) C3-C4-H4B 109.7 C11-C12-H12 120.6 C4-H4B 108.2 C7-C12-H12 120.6 C6-N1-C1-O1 3.1 (3) C1-N1-C5-C4 21.7 (3) C5-N1-C1-O1 174.61 (17) C6-N1-C5-C4 -166.58 (16) C6-N1-C1-C2 -177.19 (15) C3-C4-C5-N1 -47.8 (2) C5-N1-C1-C2 -5.7 (3) O3-S1-C7-C8 -54.80 (15) O1-C1-C2-C3 17.0 (2) C2-S1-C7-C12 150.39 (14) O1-C1-C2-S1 73.16 (18) O3-S1-C7-C12 150.39 (14) O3-S1-C2-C1 172.73 (12) C2-S1-C7-C12 -92.76 (15) O2-S1-C2-C1 172.73 (12) C2-S1-C7-C12 -92.76 (15) O2-S1-C2-C3 46.40 (15) C7-C8-C9 0.5 (3) C7-S1-C2-C1 72.12 (14) S1-C2-C7-C8-C9 0.	С2—С3—Н3В	109.6	C9—C10—H10	119.8
CS-C4-C3 109.79 (16) C12-C11-C10 120.17 (18) CS-C4-H4A 109.7 C12-C11-H11 119.9 C3-C4-H4A 109.7 C10-C11-H11 119.9 C5-C4-H4B 109.7 C11-C12-C7 118.87 (17) C3-C4-H4B 109.7 C11-C12-H12 120.6 C4-C4-H4B 108.2 C7-C12-H12 120.6 C6-N1-C1-O1 3.1 (3) C1-N1-C5-C4 21.7 (3) C5-N1-C1-O1 174.61 (17) C6-N1-C5-C4 -166.58 (16) C6-N1-C1-C2 -177.19 (15) C3-C4-C5-N1 -47.8 (2) C5-N1-C1-C2 -5.7 (3) O3-S1-C7-C8 -154.80 (15) O1-C1-C2-C3 170.2 (2 C2-S1-C7-C8 90.58 (15) O1-C1-C2-S1 73.16 (18) O3-S1-C7-C12 18.617 N1-C1-C2-S1 -106.55 (15) O2-S1-C7-C12 190.39 (14) O3-S1-C2-C1 172.73 (12) C2-S1-C7-C8-C9 0.5 (3) C7-S1-C2-C3 -64.00 (15) C7-C8-C9 0.5 (3) C7-S1-C2-C3 -66.51 (2) C9-C10-C11 0.0 (3) C2-S1-C2-C1 -72.12 (14) S1-C7-C8-C9	НЗА—СЗ—НЗВ	108.1	С11—С10—Н10	119.8
CS-C4-H4A 109.7 C12-C11-H11 119.9 C3-C4-H4A 109.7 C10-C11-H11 119.9 C5-C4-H4B 109.7 C11-C12-C7 118.87 (17) C3-C4-H4B 109.7 C11-C12-H12 120.6 H4A-C4-H4B 108.2 C7-C12-H12 120.6 C6-N1-C1-01 3.1 (3) C1-N1-C5-C4 21.7 (3) C5-N1-C1-01 174.61 (17) C6-N1-C5-C4 -166.58 (16) C6-N1-C1-C2 -177.19 (15) C3-C4-C5-N1 -47.8 (2) C5-N1-C1-C2 -57.7 (3) O3-S1-C7-C8 -154.80 (15) O1-C1-C2-C3 163.27 (15) O2-S1-C7-C8 -62.27 (17) N1-C1-C2-C3 17.0 (2) C2-S1-C7-C12 21.86 (17) N1-C1-C2-S1 73.16 (18) O3-S1-C7-C12 21.86 (17) N1-C1-C2-S1 -106.55 (15) O2-S1-C7-C12 29.76 (15) O2-S1-C2-C1 172.73 (12) C2-S1-C7-C12 -92.76 (15) O2-S1-C2-C1 -72.12 (14) S1-C7-C8-C9 0.5 (3) C7-S1-C2-C3 46.40 (15) C7-C8-C9 0.5 (3) C7-S1-C2-C3 46.40 (15) C7-C8-C9	C5—C4—C3	109.79 (16)	C12—C11—C10	120.17 (18)
C3-C4-H4A 109.7 C10-C11-H11 119.9 C5-C4-H4B 109.7 C11-C12-C7 118.87 (17) C3-C4-H4B 109.7 C11-C12-H12 120.6 H4A-C4-H4B 108.2 C7-C12-H12 120.6 C6-N1-C1-01 3.1 (3) C1-N1-C5-C4 21.7 (3) C5-N1-C1-02 -177.19 (15) C3-C4-C5-N1 -47.8 (2) C5-N1-C1-C2 -5.7 (3) O3-S1-C7-C8 -26.27 (17) N1-C1-C2-C3 -163.27 (15) O2-S1-C7-C8 -26.27 (17) N1-C1-C2-C3 170.02 C2-S1-C7-C12 21.86 (17) N1-C1-C2-S1 73.16 (18) O3-S1-C7-C12 21.86 (17) N1-C1-C2-S1 -106.55 (15) O2-S1-C7-C12 150.39 (14) O3-S1-C2-C1 172.73 (12) C2-S1-C7-C12 -92.76 (15) O2-S1-C2-C1 -72.12 (14) S1-C7-C12 -92.76 (15) O2-S1-C2-C3 46.40 (15) C7-C8-C9 0.5 (3) C7-S1-C2-C3 46.40 (15) C7-C8-C9 0.5 (3) O2-S1-C2-C3 46.40 (15) C7-C12-C11 0.0 (3) O2-S1-C2-C3 46.40 (15) C7-C12-C11	C5—C4—H4A	109.7	C12—C11—H11	119.9
C5-C4-H4B 109.7 C11-C12-C7 118.87 (17) C3-C4-H4B 109.7 C11-C12-H12 120.6 H4A-C4-H4B 108.2 C7-C12-H12 120.6 C6-N1-C1-O1 3.1 (3) C1-N1-C5-C4 21.7 (3) C5-N1-C1-O1 174.61 (17) C6-N1-C5-C4 -166.58 (16) C6-N1-C1-C2 -177.19 (15) C3-C4-C5-N1 -47.8 (2) C5-N1-C1-C2 -5.7 (3) O3-S1-C7-C8 -154.80 (15) O1-C1-C2-C3 -163.27 (15) O2-S1-C7-C8 -26.27 (17) N1-C1-C2-C3 170.0 (2) C2-S1-C7-C12 18.66 (17) N1-C1-C2-S1 73.16 (18) O3-S1-C7-C12 150.39 (14) O3-S1-C2-C1 172.73 (12) C2-S1-C7-C8-C9 0.5 (3) C7-S1-C2-C1 -72.12 (14) S1-C7-C12 -92.76 (15) O2-S1-C2-C1 -72.12 (14) S1-C7-C8-C9 0.5 (3) C7-S1-C2-C3 46.40 (15) C7-C8-C9 0.5 (3) C7-S1-C2-C3 46.40 (15) C7-C8-C9 0.5 (3) C7-S1-C2-C3 46.40 (15) C7-C8-C9 0.5 (3) C2-S1-C2-C3 46.40 (15) C7-C8-C	C3—C4—H4A	109.7	C10-C11-H11	119.9
C3-C4-H4B 109.7 C11-C12-H12 120.6 H4A-C4-H4B 108.2 C7-C12-H12 120.6 C6-N1-C1-O1 3.1 (3) C1-N1-C5-C4 21.7 (3) C5-N1-C1-O1 174.61 (17) C6-N1-C5-C4 -166.58 (16) C6-N1-C1-C2 -177.19 (15) C3-C4-C5-N1 -47.8 (2) C5-N1-C1-C2 -5.7 (3) 03-S1-C7-C8 -154.80 (15) O1-C1-C2-C3 -163.27 (15) 02-S1-C7-C8 -26.27 (17) N1-C1-C2-C3 170. (2) C2-S1-C7-C8 90.58 (15) O1-C1-C2-S1 73.16 (18) 03-S1-C7-C12 150.39 (14) O3-S1-C2-C1 172.73 (12) C2-S1-C7-C12 -92.76 (15) O2-S1-C2-C1 172.73 (12) C2-S1-C7-C12 -92.76 (15) O2-S1-C2-C1 172.73 (12) C2-S1-C7-C12 -92.76 (15) O2-S1-C2-C1 44.09 (14) C12-C7-C8-C9 0.5 (3) C7-S1-C2-C3 46.40 (15) C7-C8-C9 0.5 (3) O2-S1-C2-C3 46.40 (15) C7-C8-C9 0.5 (3) O2-S1-C2-C3 46.40 (15) C7-C8-C9 0.5 (3) O2-S1-C2-C3 66.20 <td< td=""><td>C5—C4—H4B</td><td>109.7</td><td>C11—C12—C7</td><td>118.87 (17)</td></td<>	C5—C4—H4B	109.7	C11—C12—C7	118.87 (17)
H4A—C4—H4B108.2 $C7$ —C12—H12120.6C6—N1—C1—O13.1 (3)C1—N1—C5—C421.7 (3)C5—N1—C1—O1174.61 (17)C6—N1—C5—C4-166.58 (16)C6—N1—C1—C2-177.19 (15)C3—C4—C5—N1-47.8 (2)C5—N1—C1—C2-5.7 (3)O3—S1—C7—C8-154.80 (15)O1—C1—C2—C3-163.27 (15)O2—S1—C7—C8-26.27 (17)N1—C1—C2—C317.0 (2)C2—S1—C7—C1221.86 (17)N1—C1—C2—S173.16 (18)O3—S1—C7—C12150.39 (14)O3—S1—C2—C1172.73 (12)C2—S1—C7—C12-92.76 (15)O2—S1—C2—C144.09 (14)C12—C7—C8—C90.5 (3)C7—S1—C2—C346.40 (15)C7—C8—C90.5 (3)O2—S1—C2—C3-82.24 (14)C8—C9—C10—C110.0 (3)C7—S1—C2—C3161.55 (12)C9—C10—C11—C120.5 (3)C1—C2—C3—C478.63 (17)C8—C7—C12—C110.0 (3)C2—C3—C478.63 (17)C8—C7—C12—C11-176.58 (14)Hydrogen-bond geometry (Å, °)D—HH···AD···AD—H···AD—HH···AD···AD—H···A	C3—C4—H4B	109.7	C11—C12—H12	120.6
C6-N1-C1-O1 3.1 (3) C1-N1-C5-C4 21.7 (3) C5-N1-C1-O1 174.61 (17) C6-N1-C5-C4 -166.58 (16) C6-N1-C1-C2 -177.19 (15) C3-C4-C5-N1 -47.8 (2) C5-N1-C1-C2 -5.7 (3) O3-S1-C7-C8 -154.80 (15) O1-C1-C2-C3 -163.27 (15) O2-S1-C7-C8 -26.27 (17) N1-C1-C2-C3 17.0 (2) C2-S1-C7-C8 90.58 (15) O1-C1-C2-S1 73.16 (18) O3-S1-C7-C12 21.86 (17) N1-C1-C2-S1 -106.55 (15) O2-S1-C7-C12 -92.76 (15) O2-S1-C2-C1 172.73 (12) C2-S1-C7-C8-C9 0.5 (3) C7-S1-C2-C1 -72.12 (14) S1-C7-C8-C9 0.5 (3) C7-S1-C2-C1 -72.12 (14) S1-C7-C8-C9 0.5 (3) O2-S1-C2-C3 46.40 (15) C7-C8-C9 0.5 (3) C1-C2-C3-C4 -44.1 (2)	H4A—C4—H4B	108.2	C7—C12—H12	120.6
C5-N1-C1-O1 174.61 (17) C6-N1-C5-C4 -166.58 (16) C6-N1-C1-C2 -177.19 (15) C3-C4-C5-N1 -47.8 (2) C5-N1-C1-C2 -5.7 (3) 03-S1-C7-C8 -154.80 (15) O1-C1-C2-C3 -163.27 (15) 02-S1-C7-C8 -26.27 (17) N1-C1-C2-C3 17.0 (2) C2-S1-C7-C8 90.58 (15) O1-C1-C2-S1 73.16 (18) 03-S1-C7-C12 21.86 (17) N1-C1-C2-S1 -106.55 (15) 02-S1-C7-C12 150.39 (14) O3-S1-C2-C1 172.73 (12) C2-S1-C7-C12 -92.76 (15) O2-S1-C2-C1 44.09 (14) C12-C7-C8-C9 0.5 (3) C7-S1-C2-C1 -72.12 (14) S1-C7-C8-C9 177.05 (14) O3-S1-C2-C3 46.40 (15) C7-C8-C9-C10 -0.5 (3) O2-S1-C2-C3 46.30 (17) C8-C9-C10-C11 0.0 (3) C7-S1-C2-C3 161.55 (12) C9-C10-C11-C12 0.5 (3) C1-C2-C3-C4 -44.1 (2) C10-C11-C12-C7 -0.5 (3) S1-C2-C3-C4 78.63 (17) C8-C7-C12-C11 0.0 (3) C2-C3-C4-C5 59.6 (2) S1-C7-C12-C11 -176.58 (14)	C6—N1—C1—O1	3.1 (3)	C1—N1—C5—C4	21.7 (3)
C6-N1-C1-C2 -177.19 (15) C3-C4-C5-N1 -47.8 (2) C5-N1-C1-C2 -5.7 (3) O3-S1-C7-C8 -154.80 (15) O1-C1-C2-C3 -163.27 (15) O2-S1-C7-C8 -26.27 (17) N1-C1-C2-C3 17.0 (2) C2-S1-C7-C12 21.86 (17) N1-C1-C2-S1 73.16 (18) O3-S1-C7-C12 21.86 (17) N1-C1-C2-S1 -106.55 (15) O2-S1-C7-C12 150.39 (14) O3-S1-C2-C1 172.73 (12) C2-S1-C7-C12 -92.76 (15) O2-S1-C2-C1 172.73 (12) C2-S1-C7-C12 -92.76 (15) O2-S1-C2-C1 44.09 (14) C12-C7-C8-C9 0.5 (3) C7-S1-C2-C1 -72.12 (14) S1-C7-C8-C9 0.5 (3) O2-S1-C2-C3 46.40 (15) C7-C8-C9-C10 -0.5 (3) O2-S1-C2-C3 46.40 (15) C7-C8-C9-C10 -0.5 (3) O2-S1-C2-C3 161.55 (12) C9-C10-C11 0.0 (3) C7-S1-C2-C3 161.55 (12) C9-C10-C11 0.0 (3) C1-C2-C3-C4 -44.1 (2) C10-C11-C12-C7 -0.5 (3) S1-C2-C3-C4 78.63 (17) C8-C7-C12-C11 0.0 (3) C2-C3-C4-C5 </td <td>C5—N1—C1—O1</td> <td>174.61 (17)</td> <td>C6—N1—C5—C4</td> <td>-166.58 (16)</td>	C5—N1—C1—O1	174.61 (17)	C6—N1—C5—C4	-166.58 (16)
C5-N1-C1-C2 -5.7 (3) O3-S1-C7-C8 -154.80 (15) O1-C1-C2-C3 -163.27 (15) O2-S1-C7-C8 -26.27 (17) N1-C1-C2-C3 17.0 (2) C2-S1-C7-C8 90.58 (15) O1-C1-C2-S1 73.16 (18) O3-S1-C7-C12 21.86 (17) N1-C1-C2-S1 -106.55 (15) O2-S1-C7-C12 90.53 (14) O3-S1-C2-C1 172.73 (12) C2-S1-C7-C12 -92.76 (15) O2-S1-C2-C1 44.09 (14) C12-C7-C8-C9 0.5 (3) C7-S1-C2-C1 -72.12 (14) S1-C7-C8-C9 177.05 (14) O3-S1-C2-C3 46.40 (15) C7-C8-C9-C10 -0.5 (3) O2-S1-C2-C3 161.55 (12) C9-C10-C11 0.0 (3) C7-C2-C3-C4 -44.1 (2) C10-C11-C12-C7 -0.5 (3) S1-C2-C3-C4 78.63 (17) C8-C7-C12-C11 0.0 (3) C2-C3-C4-C5 59.6 (2) S1-C7-C12-C11 -176.58 (14)	C6—N1—C1—C2	-177.19 (15)	C3-C4-C5-N1	-47.8 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—N1—C1—C2	-5.7 (3)	O3—S1—C7—C8	-154.80 (15)
N1—C1—C2—C3 17.0 (2) C2—S1—C7—C8 90.58 (15) O1—C1—C2—S1 73.16 (18) O3—S1—C7—C12 21.86 (17) N1—C1—C2—S1 -106.55 (15) O2—S1—C7—C12 150.39 (14) O3—S1—C2—C1 172.73 (12) C2—S1—C7—C12 -92.76 (15) O2—S1—C2—C1 44.09 (14) C12—C7—C8—C9 0.5 (3) C7—S1—C2—C1 -72.12 (14) S1—C7—C8—C9 177.05 (14) O3—S1—C2—C3 46.40 (15) C7—C8—C9—C10 -0.5 (3) O2—S1—C2—C3 46.40 (15) C7—C8—C9—C10 -0.5 (3) O2—S1—C2—C3 161.55 (12) C9—C10—C11—C12 0.5 (3) C1—C2—C3—C4 -44.1 (2) C10—C11—C12—C7 -0.5 (3) S1—C2—C3—C4 78.63 (17) C8—C7—C12—C11 0.0 (3) C2—C3—C4—C5 59.6 (2) S1—C7—C12—C11 -176.58 (14)	O1—C1—C2—C3	-163.27 (15)	O2—S1—C7—C8	-26.27 (17)
O1-C1-C2-S1 $73.16(18)$ $O3-S1-C7-C12$ $21.86(17)$ $N1-C1-C2-S1$ $-106.55(15)$ $O2-S1-C7-C12$ $150.39(14)$ $O3-S1-C2-C1$ $172.73(12)$ $C2-S1-C7-C12$ $-92.76(15)$ $O2-S1-C2-C1$ $44.09(14)$ $C12-C7-C8-C9$ $0.5(3)$ $C7-S1-C2-C1$ $-72.12(14)$ $S1-C7-C8-C9$ $177.05(14)$ $O3-S1-C2-C3$ $46.40(15)$ $C7-C8-C9-C10$ $-0.5(3)$ $O2-S1-C2-C3$ $46.40(15)$ $C7-C8-C9-C10$ $-0.5(3)$ $O2-S1-C2-C3$ $46.40(15)$ $C7-C8-C9-C10-C11$ $0.0(3)$ $O2-S1-C2-C3$ $46.40(15)$ $C7-C8-C9-C10-C11$ $0.0(3)$ $C7-S1-C2-C3$ $161.55(12)$ $C9-C10-C11-C12$ $0.5(3)$ $C1-C2-C3-C4$ $-44.1(2)$ $C10-C11-C12-C7$ $-0.5(3)$ $S1-C2-C3-C4$ $78.63(17)$ $C8-C7-C12-C11$ $0.0(3)$ $C2-C3-C4-C5$ $59.6(2)$ $S1-C7-C12-C11$ $-176.58(14)$	N1—C1—C2—C3	17.0 (2)	C2—S1—C7—C8	90.58 (15)
N1—C1—C2—S1 -106.55 (15) O2—S1—C7—C12 150.39 (14) O3—S1—C2—C1 172.73 (12) C2—S1—C7—C12 $-92.76 (15)$ O2—S1—C2—C1 44.09 (14) C12—C7—C8—C9 0.5 (3) C7—S1—C2—C1 $-72.12 (14)$ S1—C7—C8—C9 177.05 (14) O3—S1—C2—C3 46.40 (15) C7—C8—C9—C10 $-0.5 (3)$ O2—S1—C2—C3 $-82.24 (14)$ C8—C9—C10—C11 0.0 (3) C7—S1—C2—C3 161.55 (12) C9—C10—C11—C12 0.5 (3) C1—C2—C3—C4 $-44.1 (2)$ C10—C11—C12—C7 $-0.5 (3)$ S1—C2—C3—C4 78.63 (17) C8—C7—C12—C11 $0.0 (3)$ C2—C3—C4—C5 59.6 (2) S1—C7—C12—C11 $-176.58 (14)$	O1-C1-C2-S1	73.16 (18)	O3—S1—C7—C12	21.86 (17)
O3-S1-C2-C1 $172.73 (12)$ $C2-S1-C7-C12$ $-92.76 (15)$ $O2-S1-C2-C1$ $44.09 (14)$ $C12-C7-C8-C9$ $0.5 (3)$ $C7-S1-C2-C1$ $-72.12 (14)$ $S1-C7-C8-C9$ $177.05 (14)$ $O3-S1-C2-C3$ $46.40 (15)$ $C7-C8-C9-C10$ $-0.5 (3)$ $O2-S1-C2-C3$ $46.40 (15)$ $C7-C8-C9-C10$ $-0.5 (3)$ $O2-S1-C2-C3$ $-82.24 (14)$ $C8-C9-C10-C11$ $0.0 (3)$ $C7-S1-C2-C3$ $161.55 (12)$ $C9-C10-C11-C12$ $0.5 (3)$ $C1-C2-C3-C4$ $-44.1 (2)$ $C10-C11-C12-C7$ $-0.5 (3)$ $S1-C2-C3-C4$ $78.63 (17)$ $C8-C7-C12-C11$ $0.0 (3)$ $S1-C2-C3-C4-C5$ $59.6 (2)$ $S1-C7-C12-C11$ $-176.58 (14)$	N1-C1-C2-S1	-106.55 (15)	O2—S1—C7—C12	150.39 (14)
02-S1-C2-C1 $44.09 (14)$ $C12-C7-C8-C9$ $0.5 (3)$ $C7-S1-C2-C1$ $-72.12 (14)$ $S1-C7-C8-C9$ $177.05 (14)$ $03-S1-C2-C3$ $46.40 (15)$ $C7-C8-C9-C10$ $-0.5 (3)$ $02-S1-C2-C3$ $-82.24 (14)$ $C8-C9-C10-C11$ $0.0 (3)$ $02-S1-C2-C3$ $-82.24 (14)$ $C8-C9-C10-C11$ $0.0 (3)$ $C7-S1-C2-C3$ $161.55 (12)$ $C9-C10-C11-C12$ $0.5 (3)$ $C1-C2-C3-C4$ $-44.1 (2)$ $C10-C11-C12-C7$ $-0.5 (3)$ $S1-C2-C3-C4$ $-86.3 (17)$ $C8-C7-C12-C11$ $0.0 (3)$ $S1-C2-C3-C4$ $78.63 (17)$ $C8-C7-C12-C11$ $0.0 (3)$ $C2-C3-C4-C5$ $59.6 (2)$ $S1-C7-C12-C11$ $-176.58 (14)$	O3—S1—C2—C1	172.73 (12)	C2—S1—C7—C12	-92.76 (15)
C7-S1-C2-C1 -72.12 (14) S1-C7-C8-C9 177.05 (14) O3-S1-C2-C3 46.40 (15) C7-C8-C9-C10 -0.5 (3) O2-S1-C2-C3 -82.24 (14) C8-C9-C10-C11 0.0 (3) C7-S1-C2-C3 161.55 (12) C9-C10-C11-C12 0.5 (3) C1-C2-C3-C4 -44.1 (2) C10-C11-C12-C7 -0.5 (3) S1-C2-C3-C4 78.63 (17) C8-C7-C12-C11 0.0 (3) C2-C3-C4-C5 59.6 (2) S1-C7-C12-C11 -176.58 (14)	O2—S1—C2—C1	44.09 (14)	С12—С7—С8—С9	0.5 (3)
O3-S1-C2-C3 $46.40 (15)$ $C7-C8-C9-C10$ $-0.5 (3)$ $O2-S1-C2-C3$ $-82.24 (14)$ $C8-C9-C10-C11$ $0.0 (3)$ $C7-S1-C2-C3$ $161.55 (12)$ $C9-C10-C11-C12$ $0.5 (3)$ $C1-C2-C3-C4$ $-44.1 (2)$ $C10-C11-C12-C7$ $-0.5 (3)$ $S1-C2-C3-C4$ $78.63 (17)$ $C8-C7-C12-C11$ $0.0 (3)$ $C2-C3-C4-C5$ $59.6 (2)$ $S1-C7-C12-C11$ $-176.58 (14)$	C7—S1—C2—C1	-72.12 (14)	S1—C7—C8—C9	177.05 (14)
$O2-S1-C2-C3$ $-82.24 (14)$ $C8-C9-C10-C11$ $0.0 (3)$ $C7-S1-C2-C3$ $161.55 (12)$ $C9-C10-C11-C12$ $0.5 (3)$ $C1-C2-C3-C4$ $-44.1 (2)$ $C10-C11-C12-C7$ $-0.5 (3)$ $S1-C2-C3-C4$ $78.63 (17)$ $C8-C7-C12-C11$ $0.0 (3)$ $C2-C3-C4-C5$ $59.6 (2)$ $S1-C7-C12-C11$ $0.0 (3)$ $Hydrogen-bond geometry (Å, °)$ $D-H$ $H\cdots A$ $D\cdots A$ $D-H\cdots A$	O3—S1—C2—C3	46.40 (15)	C7—C8—C9—C10	-0.5 (3)
C7-S1-C2-C3 161.55 (12) C9-C10-C11-C12 0.5 (3) C1-C2-C3-C4 -44.1 (2) C10-C11-C12-C7 -0.5 (3) S1-C2-C3-C4 78.63 (17) C8-C7-C12-C11 0.0 (3) C2-C3-C4-C5 59.6 (2) S1-C7-C12-C11 -176.58 (14) Hydrogen-bond geometry (Å, °) D-H H···A D···A D-H···A	O2—S1—C2—C3	-82.24 (14)	C8-C9-C10-C11	0.0 (3)
C1—C2—C3—C4 -44.1 (2) C10—C11—C12—C7 -0.5 (3) S1—C2—C3—C4 78.63 (17) C8—C7—C12—C11 0.0 (3) C2—C3—C4—C5 59.6 (2) S1—C7—C12—C11 -176.58 (14) Hydrogen-bond geometry (Å, °) D —H H···A D ···A D —H···A	C7—S1—C2—C3	161.55 (12)	C9-C10-C11-C12	0.5 (3)
$S1-C2-C3-C4$ $78.63 (17)$ $C8-C7-C12-C11$ $0.0 (3)$ $C2-C3-C4-C5$ $59.6 (2)$ $S1-C7-C12-C11$ $-176.58 (14)$ Hydrogen-bond geometry (Å, °) $D-H$ $H\cdots A$ $D\cdots A$ $D-H\cdots A$	C1—C2—C3—C4	-44.1 (2)	C10-C11-C12-C7	-0.5 (3)
C2—C3—C4—C5 59.6 (2) S1—C7—C12—C11 -176.58 (14) Hydrogen-bond geometry (Å, °) D—H···A D—H H···A D···A D—H···A	S1—C2—C3—C4	78.63 (17)	C8—C7—C12—C11	0.0 (3)
Hydrogen-bond geometry (Å, °) D—H···A D —H H···A D ···A D —H···A	C2—C3—C4—C5	59.6 (2)	S1—C7—C12—C11	-176.58 (14)
D—H···A D —H H···A D ···A D —H···A	Hydrogen-bond geometry (Å, °)			
	D—H···A	<i>D</i> —Н	H···A	D···A D—H···A

supplementary materials

C2—H2···O1 ⁱ	1.00	2.29	3.272 (2)	168
C6—H6B···O2 ⁱⁱ	0.98	2.55	3.424 (3)	148
C11—H11···O3 ⁱⁱⁱ	0.95	2.62	3.224 (3)	122
C4—H4A····O1 ^{iv}	0.99	2.48	3.328 (2)	144
Symmetry codes: (i) $-x+2$, $-y$, $-z+1$; (ii) $-x+2$, $-y+1$, $-z+1$; (iii) $-x+1$, $-y$, $-z+1$; (iv) $x-1/2$, $-y+1/2$, $z-1/2$.				

Fig. 1

Fig. 2

